51 research outputs found

    AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery

    Get PDF
    Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans

    Harnessing a versatile robust lactonase for biotechnological applications

    Get PDF
    Extremozymes have gained considerable interest as they could meet industrial requirements. Among these, SsoPox is a hyperthermostable enzyme isolated from the archaeon Sulfolobus solfataricus1. This enzyme is a lactonase catalyzing the hydrolysis of acyl-homoserine lactones; these molecules are involved in Gram-negative bacterial communication referred to as quorum sensing2. SsoPox exhibits promiscuous phosphotriesterase activity for the degradation of organophosphorous chemicals including insecticides and chemical warfare agents3. Owing to its bi-functional catalytic abilities as well as its intrinsic stability, SsoPox is appealing for many applications, having potential uses in the agriculture, defense, food and health industries. This enzyme have been rationally engineered and highly improved lactonase and phosphotriesterase variants were isolated4. Their biotechnological properties were investigated and their resistance against diverse process-like and operating conditions such as heat resistance, contact with organic solvents, sterilization, storage and immobilization were underlined5. Lactonase improved variants were shown to drastically reduce virulence and biofilm formation in clinical isolates of Pseudomonas aeruginosa and to decrease mortality in rat pneumonia model6,7. The antibiofilm capacity of the enzyme was also proved to be of outmost interest for antifouling applications. Enhanced phosphotriesterase variants were shown to efficiently decontaminate a broad panel of organophosphorus insecticides and were successfully incorporated into filtration devices for bioremediation purposes8. The degradation products generated through enzyme hydrolysis drastically reduced toxicity and increased regeneration capacity in planarian, an original Plathelmintes model. Regarding their tremendous stability these variants are currently used to develop antibacterial medical devices, antifouling paintings and insecticide bioremediation tools. 1. Elias, M. et al. Structural Basis for Natural Lactonase and Promiscuous Phosphotriesterase Activities. J. Mol. Biol. 379, 1017–1028 (2008). 2. Bzdrenga, J. et al. Biotechnological applications of quorum quenching enzymes. Chem. Biol. Interact. (2016). doi:10.1016/j.cbi.2016.05.028 3. Jacquet, P. et al. Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environ. Sci. Pollut. Res. 1–19 (2016). doi:10.1007/s11356-016-6143-1 4. Hiblot, J., Gotthard, G., Elias, M. & Chabriere, E. Differential Active Site Loop Conformations Mediate Promiscuous Activities in the Lactonase SsoPox. PLoS ONE 8, e75272 (2013). 5. Rémy, B. et al. Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Sci. Rep. 6, (2016). 6. Guendouze, A. et al. Effect of quorum quenching lactonase in clinical isolates of Pseudomonas aeruginosa and comparison with quorum sensing inhibitors. Front. Microbiol. 8, (2017). 7. Hraiech, S. et al. Inhaled Lactonase Reduces Pseudomonas aeruginosa Quorum Sensing and Mortality in Rat Pneumonia. PLoS ONE 9, e107125 (2014). 8. Hiblot, J., Gotthard, G., Chabriere, E. & Elias, M. Characterisation of the organophosphate hydrolase catalytic activity of SsoPox. Sci. Rep. 2, (2012)

    Eukaryotic DING Proteins Are Endogenous: An Immunohistological Study in Mouse Tissues

    Get PDF
    BACKGROUND: DING proteins encompass an intriguing protein family first characterized by their conserved N-terminal sequences. Some of these proteins seem to have key roles in various human diseases, e.g., rheumatoid arthritis, atherosclerosis, HIV suppression. Although this protein family seems to be ubiquitous in eukaryotes, their genes are consistently lacking from genomic databases. Such a lack has considerably hampered functional studies and has fostered therefore the hypothesis that DING proteins isolated from eukaryotes were in fact prokaryotic contaminants. PRINCIPAL FINDINGS: In the framework of our study, we have performed a comprehensive immunological detection of DING proteins in mice. We demonstrate that DING proteins are present in all tissues tested as isoforms of various molecular weights (MWs). Their intracellular localization is tissue-dependant, being exclusively nuclear in neurons, but cytoplasmic and nuclear in other tissues. We also provide evidence that germ-free mouse plasma contains as much DING protein as wild-type. SIGNIFICANCE: Hence, data herein provide a valuable basis for future investigations aimed at eukaryotic DING proteins, revealing that these proteins seem ubiquitous in mouse tissue. Our results strongly suggest that mouse DING proteins are endogenous. Moreover, the determination in this study of the precise cellular localization of DING proteins constitute a precious evidence to understand their molecular involvements in their related human diseases

    Human-Phosphate-Binding-Protein inhibits HIV-1 gene transcription and replication

    Get PDF
    The Human Phosphate-Binding protein (HPBP) is a serendipitously discovered lipoprotein that binds phosphate with high affinity. HPBP belongs to the DING protein family, involved in various biological processes like cell cycle regulation. We report that HPBP inhibits HIV-1 gene transcription and replication in T cell line, primary peripherical blood lymphocytes and primary macrophages. We show that HPBP is efficient in naĂŻve and HIV-1 AZT-resistant strains. Our results revealed HPBP as a new and potent anti HIV molecule that inhibits transcription of the virus, which has not yet been targeted by HAART and therefore opens new strategies in the treatment of HIV infection

    Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes

    No full text
    1st International Conference on Chemical Biological Radiological and Nuclear, Research and Innovation (CBRN-RI), Antibes Juan les Pins, FRANCE, MAR 16-18, 2015International audienceOrganophosphorus chemicals are highly toxic molecules mainly used as pesticides. Some of them are banned warfare nerve agents. These compounds are covalent inhibitors of acetylcholinesterase, a key enzyme in central and peripheral nervous systems. Numerous approaches, including chemical, physical, and biological decontamination, have been considered for developing decontamination methods against organophosphates (OPs). This work is an overview of both validated and emerging strategies for the protection against OP pollution with special attention to the use of decontaminating enzymes. Considerable efforts have been dedicated during the past decades to the development of efficient OP degrading biocatalysts. Among these, the promising biocatalyst SsoPox isolated from the archaeon Sulfolobus solfataricus is emphasized in the light of recently published results. This hyperthermostable enzyme appears to be particularly attractive for external decontamination purposes with regard to both its catalytic and stability properties

    AmyP53, a Therapeutic Peptide Candidate for the Treatment of Alzheimer’s and Parkinson’s Disease: Safety, Stability, Pharmacokinetics Parameters and Nose-to Brain Delivery

    No full text
    International audienceNeurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans

    Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective

    No full text
    Numerous bacteria utilize molecular communication systems referred to as quorum sensing (QS) to synchronize the expression of certain genes regulating, among other aspects, the expression of virulence factors and the synthesis of biofilm. To achieve this process, bacteria use signaling molecules, known as autoinducers (AIs), as chemical messengers to share information. Naturally occurring strategies that interfere with bacterial signaling have been extensively studied in recent years, examining their potential to control bacteria. To interfere with QS, bacteria use quorum sensing inhibitors (QSIs) to block the action of AIs and quorum quenching (QQ) enzymes to degrade signaling molecules. Recent studies have shown that these strategies are promising routes to decrease bacterial pathogenicity and decrease biofilms, potentially enhancing bacterial susceptibility to antimicrobial agents including antibiotics and bacteriophages. The efficacy of QSIs and QQ enzymes has been demonstrated in various animal models and are now considered in the development of new medical devices against bacterial infections, including dressings, and catheters for enlarging the therapeutic arsenal against bacteria
    • …
    corecore